Boundary value problems for complete partial differential equations of variable order
نویسندگان
چکیده
منابع مشابه
Initial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملInverse Boundary Value Problems for Systems of Partial Differential Equations
We describe the main results and the ideas of the proofs in the papers [E] and [ER2] (see References). In addition, we simplify the construction of asymptotic solutions in [E], using the results of [ER2], and we simplify the proof of estimate (3.9) that was given in [ER2]. 1 The Schrödinger Equation with an External Yang-Mills Potential. Let Ω be a smooth bounded domain in R, n ≥ 3. Consider th...
متن کاملInitial Boundary Value Problems for Hyperbolic Partial Differential Equations
1, Differential equations in one space dimension. The simplest hyperbolic differential equation is given by (1.1) du/dt = cdu/dx, where c is a constant, Its general solution is u(x, t) — F(x + ci), i.e., it is constant along the "characteristic lines" x + ct = const (see Figure 1). Therefore, if we u(l,t) = g(t) u(0,t)*g(t want to determine the solution of (1.1) in the region 0 ^ x ^ 1, t ja 0,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations
سال: 2010
ISSN: 0012-2661,1608-3083
DOI: 10.1134/s0012266110090144